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Using a mathematical framework originally developed for the development of PML
schemes in computational electromagnetics, we develop a set of strongly well-posed
PML equations for the absorption of acoustic and vorticity waves in two-dimensional
convective acoustics under the assumption of a spatially constant mean flow. A
central piece in this development is the development of a variable transformation
that conserves the dispersion relation of the physical space equations. The PML
equations are given for layers being perpendicular to the direction of the mean flow
as well as for layers being parallel to the mean flow. The efficacy of the PML scheme is
illustrated by solving the equations of acoustics using a 4th order scheme, confirming
the accuracy as well as stability of the proposed schengi999 Academic Press
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1. INTRODUCTION

The ability to accurately simulate wave phenomena is important in several physical fie
e.g., electromagnetics, ambient as well as advective acoustics associated with a meat
elasticity, and seismology.

Due to limited computing resources the numerical simulations of such problems o
must be confined to truncated domains much smaller than the physical space in whic
wave phenomenatake place. In such cases, numerical reflections of outgoing waves fro
boundaries of the numerical domain can reenter the computational domain and event
falsify the results. This artifact limits the overall order of accuracy of the algorithm us
in the computation and becomes particularly troublesome in cases where higher ord
accuracy is required due to mode resolution, storage availability, etc.

To deal with these types of problems local non-reflecting boundary conditions w
derived for the wave equation by Engquist and Majda [1] and later by Bayliss and Turkel
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Reviews of such techniques can be found in [3, 4]. In practice, however, their effectivel
is limited. The notion of perfectly matched absorbing layers (PML) was introduced in
context of computational electromagnetics (CEM) by Berenger [5]. The idea behind PM
to attribute to the layers material properties that modify the original field equations so tha
waves will decay in all directions of propagation in the layers. However, it has been sh
by Abarbanel and Gottlieb [6] that the splitting technique, introduced by Berenger, res
in a system of partial differential equations (PDESs) which are only weakly well-posed, i
they may become ill-posed under certain perturbations—an example of which is provide
[6]. Alternative methods to derive PML equations in CEM are to use physical considerati
in establishing the absorbing source terms for the unsplit Maxwell’s equations, as discu
in [7, 8]. An overview of such techniques can be found in [9]. These new equations
well-posed and yield reflection coefficients as small as obtained when using the Bere
PML equations. Yet another approach [10] is to derive the PML equations from pul
mathematical considerations. This approach yields, in the CEM case, a family of P
equations that includes the equations in [8] as a special case.

It is straightforward to show that there is a one to one correspondence between the
of two-dimensional ambient acoustics (no mean flow) and transverse electromagnetic
propagation. Hence the PML procedures of CEM may be applied directly to the cas
ambient acoustics.

In this paper we consider the case of advected acoustics (non-vanishing mean flow)
the PML layers being normal and parallel to the mean flow. This problem was previot
addressed by Hu [11] by generalizing Berenger's splitting technique to this case. Howe
as for the case of electromagnetics, Hesthaven [12] subsequently showed loss of s
well-posedness as a result of the splitting, hence explaining the problems of instat
reported in [11]. Equivalent conclusions, although obtained through a different proced
were reached in [13]. While alternatives, producing layers with PML like behavior, we
proposed in [12] by artificially changing the flow Mach number continuously to zero with
the PML layer and using the results from CEM, the construction of a well-posed P!
method for general advective acoustics remains open.

It is to address this particular concern that we here propose to use an extension c
procedure, originally used in [10] to construct the PML equations for the case of elec
magnetics by means of a mathematical procedure, to deal with the more complex ca
advective acoustics.

In Section 2 we consider the two-dimensional equations of advected acoustic |
earized Euler equations) and present a coordinate transformation that allows for a |
convenient derivation of the PML equations. Section 3 is devoted to a derivation of
PML equations for the absorbing layers surrounding the basic computational don
while Section 4 presents numerical results for a standard test problem, confirming
expected performance of the developed framework. Section 5 concludes with a few ge
remarks.

2. THE EQUATIONS OF ACOUSTICS

We consider the propagation of waves induced in a uniform two-dimensional subs
flow, (ug, 0), of a compressible fluid, by small perturbations. This phenomenon is descri
by the linearized Euler equations for the perturbations of the depsjtgnd velocitiesy’
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andv’, as
%+%%+%%+m%=& (2.1)
%;%%+%%=Q (2.2)
%;%%+%%=Q (2.3)

where we assumed isentropy of the flow, i®.= po(po). The speed of soundy, is given
by ¢Z = dpo/d po where po, po are the unperturbed pressure and density of the flow. T
dimensional time and distances are givert by, andy.

We nondimensionalize this set of equations by using a reference lapgtly, =L
(usually related to the wavelength of the acoustic wave), and a referencé tisrle/co.
Similarly py = po and Uy = v; =Co. With M =Ug/Co, the resulting set of dimensionless
equations is

a a ou 0
LIV v

— 4+ —=0, 24

ot + aX + aX + ay (2.4)
au au  adp

—+M—+ L =0, 25

at + axX + X (2:5)
v dv  dp

4+ M=+-==0, 2.6

ot + X + ay (2.6)

where the primé(-)") has been dropped from the perturbation quantities. The case of amb
acoustics is obtained by letting the Mach numbér> 0. This case has been discusse
by Hesthaven [12] and is known to correspond exactly to the case of two-dimensi
electromagnetics. Hence, fdd = 0, the solution of any smooth initial boundary value
problem can be shown to be expressed as a superposition of plane waves on the forn

P 1\
u ~ o ela)(tfozxfﬂy)’ (27)
v B

with a dispersion relation of the form
a’>+ B2 =1 (2.8)

WhenM =# 0, however, the resulting dispersion relation is much more complicated, and
analysis from the case of electromagnetics cannot easily be carried over to the case ac
waves.

To overcome this difficulty we shall transform Egs. (2.4)—(2.6) to a new set of coordina
(§,n,7),as

& =X, (2.9)
n=+v1—M2y=yy, (2.10)

= Mx+ 2. (2.11)
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This transformation is related to the one utilized in [2] although with stretching appliec
y rather than irx as in [2]. As we shall see shortly, this difference is crucial.
The transformed equations take the form (with= ~/1 — M2),

—+M_—+y— =0, (2.12)
T n
—+—+-—=0. (2.14)

Note that the order of the equations has been reorganized such tNatfdd (y = 1), one
recovers the two-dimensional transverse electric set of Maxwell's equations [9] thro
the simple transformatiomm <> H,u < Ey, v <+ —E. This is done purely for conve-
nience.

We shall seek plane wave solutions in the stretched space, ), of the form

v i\
ul=1\q |82, (2.15)
P O3

For this ansatz to be a solutionmust be the solvability eigenvalue of (2.12)—(2.14) afte
the substitution of (2.15). The three distinct eigenvalues are given as

2o = 1/M, (2.16)
Mm=1V1-B22 A, (2.17)
ro=—\1-B2=—A, (2.18)

with the three corresponding eigenvectors being

M
qgo=|-"8 1, (2.19a)
0
By
G=| A-M |, (2.19b)
1-MA
By
Qo= -A-M |. (2.19¢)
1+ MA

Theig-solution corresponds to the rightward moving vorticity wave whose amplitude tel
to zero asM — 0; see Eq. (2.19a). Thie; and A, solutions represent the two counter-
propagating acoustic waves moving to the right and left, respectively, itéthg-plane.
Note that because of the specific transformationy, t) — (&, n, t) the eigenvalues; =
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A = —), satisfy the standard dispersion relation
A2+ BZ2=1, (2.20)

analogous to (2.8). The property is directly related to the particular transformation in
duced in (2.9)—(2.11) and will, as we shall see shortly, play a central role in facilitating
subsequent analysis. Note also that in the physical plane the exprégsioB? = 1 does
not constitute a dispersion relation.

3. CONSTRUCTION OF THE ABSORBING LAYER EQUATIONS

The set of Egs. (2.12)—(2.14) is to be solved on a finite computational domain ra
than the infinite domain on which the original analytical problem is set. We would li
to ensure that waves leaving the domain are not reflected back as these could othe
interact with the solution and eventually falsify it. The approach taken here is to surro
the computational domain with finite width strips which must be defined such that the we
propagate into these absorbing layers without reflection and decay as they continue
travel inside these layers. Moreover, we shall require that these properties are indepe
of the frequency as well as the angle of incidence of the incoming wave. (i tlyg-plane
the typical arrangement is shown in Fig. 1.

In the following we shall discuss the developments of such layers and their pro
ties in theg andn layers separately, recalling thét, y, t) is related to(&, n, t) through
Egs. (2.9)—(2.11).

3.1. The Absorbing-Layers

We shall begin by demonstrating the construction of the PML equation for the lay
—Lx —dx <X < —Lx (¢ <0 by normalization) into which only the counter-propagatin
sound wave can propagate. In other words, we consider the problem for- A <0
in the setting of the transformed variables.

Inside the layer-§ < & < 0, we postulate that the solution is given as a superposition
decaying waves, each one being of the form

1+ 9By

v . B 0 o
Ul = | —@+ HHA+ M) | detrr—Bng Al @dz (3.1)
p 1+h A+ MA)
Ly+8 ‘ :
L +--- —
p
u M
\"
_Lyxfff‘ ]
L9, i T
L-8, -L, L, L+3d,

FIG. 1. Typical configuration in théx, y)-plane of the absorbing layers.
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The coefficientg, f, andh in the ansatz (3.1) are functions{buchthag = f =h =0
for £ > 0. The same is true for the positive quantity(&). Substitution of (3.1) into (2.12)—
(2.14) leads to a system of inhomogeneous PDEs

3 3 p o~ Al® o
VLM )% g dettaBng Al @92 _ g (3.2)
0T o0& an

0a-x(z)dz _

0
_ ézeiw(HAs—Bn)e*A. £ =S, (3.3)
— & eiw(r+Aéan) _IOOGX(Z)dZ—
=& e Ji< =S, (3.4)

where the source termé,- (j =1,2,3), are given as

S = By[iw(g —h) + Mg]+ ByMA[(1+ g)(oy +iw) — (1+hjiw], (3.5)
S=lioM@— )+ h]+A—iw@+ f) + 1A+ h)(ox + i) + Mh]

+ A2M L+ h)(ox +iw) —iwld+g)], (3.6)
S=lioth—g) — M+ Aliw@d+hM — L+ f)ox +io)M — 1]
+ A’lio(l+9g) — A+ f)lox +iw)]. (3.7)

We first note that with (3.5)—(3.7) as written here, the right hand side of the sys
(3.2)—(3.4) includes the frequency and dispersion paramdters, and B), explicitly.
Left in this form, the system (3.5)—(3.7) cannot describe an absorbing layer whicl
supposed to deal equally efficient with all frequencies,and all directions of propa-
gation, (A, B), of the incoming wave. It is clear, therefore, tii(j =1, 2, 3) must be
cast in a form that precludes the explicit appearance,of, and B in the system of
Egs. (3.2)—(3.4). As we shall see, this requirement will lead us to define new, and p
bly unphysical, variables, as is the case for the PML methods in computational elec
magnetics [10].

As a first condition we require the coefficientsAf in (3.6) and (3.7) to vanish as

M[(1+ h)(ox +iw) —iwld+g)] =0, (3.8)
and
[lw(l+9) — (ox+iw)(1+ f)] =0. (3.9)
Since (3.8) must be valid for all&@ M < 1, it follows from (3.8) and (3.9) that
h=f. (3.10)
As a second choice, we take= h = 0, such that (3.6)—(3.7) become

S, = ioMg + Acy, (3.11)
S = —iwg — AMoy. (3.12)
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Particularly simple5, and$; are recovered by setting

ox(§)

g= =" (3.13)
such that
0
S = ox(M + Ao HABng Ao @2 (3.14)
0
S = —oy(1+ AM)gerHA—Bng A (@42 (3.15)

By referring to (2.19c¢) (the vectays), we immediately see that (3.14)—(3.15) implies

S = —oxp. (3.17)

Next we usey = oy /iw andh = 0 in (3.5) and after somewhat lengthy algebraic manipt
lations we recover

2 2 1

i M
sl=By[—ax(1+.“—x>+.(i+2ax(1+MA)+."—XMA+ "1 (3.18)
lw lw lw 1w

Unlike S and S, S cannot be cast only in terms of u, and p. On the other hand we
still must require thag, not depend ow, A, or B. To overcome this difficulty we define a
number of new variables

0
P, = B, dotA-Bng [,z (3.19)
0
Q, = Qxeiw(r+A$—Bn)e‘j;<o"X(Z)dz, (3.20)
0
Ry = RydoCrABng )i oo @92 (3.21)
where
- B B
pX:__V:__VKH _"_X)__"_X} (3.22)
i i i iw
and hence
~ v P.
Br= — ot (3.23)
We also take

Oy = By(1+ MA), (3.24)
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and
Ry = =—. (3.25)

Utilizing (3.23) we immediately recover (sinte <> 9/d7) a differential equation foP

8PX

— =v —oxPx. (3.26)
ot

From (3.24) we have

9 Qx

Jat

ox(2)dz

0
=iw[By(l+ M A)]eiw<f+A¥-B">e‘ﬂ<o

0
=iwBy[(1+ M A)]eiw(f+/-\é—8n)e*ff ox(@dz

and sinceh = 0, this is equivalent to (cf. (3.1))

9 Qx ap
=—y—. 3.27
Py Y o (3.27)

Finally, from (3.25) it follows that

o Ry
ot

= Q. (3.28)
Combining (3.22), (3.24), and (3.25) i we have

S = —oyv + 20xQx + 62R¢ + Mo, Py, (3.29)
with Py, Qx, andRy satisfying the differential equations (3.23), (3.27), and (3.28), respe

tively.
To summarize, the PML equations in the absorbing “infl§wlayer are

av v a ,
E+|\/|£+y£=—axv+2<erx+aX2RX+MUXPX, (3.30)
au  dap  Mov
. + 98 Y o Ox ( )
dp du  1ov
T T Y 3.32
8r+8$+y8n oxp (3.32)
3 3
x__, 0 (3.33)
T an
IP,
% 6P, (3.34)
ot
IR
X = Q. (3.35)
ot

Note that from a computational point of view (3.33)—(3.35) hardly add to the amount
computing. The quantityp/dn is evaluated in (3.30) and thus (3.33)—(3.35) weigh as thr
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additional ODEs rather than three additional PDEs. Transforming the system (3.30)—(-
back to the physical spa¢g, vy, t) yields

v v dp
ﬁ + M& =+ @ = —UXU+20xQx+(7)(2RX + MU)/(PX’

du  au  ap
ME 4%~ U= oMp,
ot ox ax U oxMe

0 0 ou  ov
—p+|\/|—'0+—+—=—axp—oxMu,

ot axX adx ay (3.36)
8Qx _ 23_,0
at U ay
P
—p =riw—oP,
Ry 2
T Y Qx-

Let us briefly consider the issue of well-posedness of this new set of equations. Cle
since the equations fdP, and R are ODEs these have no effect on the issue of we
posedness. The equation fQk, however, may affect the well-posedness of the original s

of equations.
To address this question we focus the attention on the Cauchy problem and introduc
spatial Fourier transform af as

qx,y,t) = / / Q(kx, ky, t)ei(kxX+kyy) dk, dky,

whered = [, 0, 5] represents the Fourier coefficients of the field components.
Considering the initial condition§(0) = [0, Do, po] ", the solution to (2.4)—(2.6) is
given as

q(t) — ae—i(ka—v)t + be—i(ka+v)t + Ce—ikat

with the three vectora = [ay, &,,a,]", b = [by, b,, b,]T, andc = [cy, ¢,, ¢,]T having
the entries

~ kx " Ky 1 l]OV2 - ka
= pov _ + pov _ .
a= 2 y | b= o2 y | c= 2 vov — kyu |,
—v v 0

and

v = /K2 + K, w = Goky + Doky.

We immediately recognize the three types of waves, inherent in the linearized E
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equations, giving rise to three different wave speeds. Moreover, we note thad b
as well asc are bounded for all values &f andky confirming the strong well-posedness
of the initial value problem.

Integrating the equation @y yields

Qu(®) — Ox(0)
2v . {ka —V :| _j Mkx—vy
SN tle 2

P2
- bu
Mky — v 2 'Y

=i yzav

)

2v . [Mky +v _j Moy
Sin t|e 2
MKy + v 2

from which we immediately see thé_)tx (t) remains bounded for all valueslgfandk, since
a, andb, are bounded, thereby establishing strong well-posedness of the system (3.3

It should be noted that the system remains well-posed because the auxiliary equa
contain spatial derivatives of the density only. Had the equations contained spatial de
tives of the velocity components strong well-posedness would have been lost. Folloy
the general analysis outlined in [12] it follows that loss of strong well-posedness hapy
as a direct consequence of the nonzero term related to the vorticity wave.

Let us now briefly consider the situation where we wish to construct the PML equati
in the right absorbing-layer,Ly <X < Ly + 8x (1 <& < 1+ 8« by normalization) as illus-
trated in Fig. 1. We have already established that this layer is entered by a vorticity w
(with A=40= ﬁ) as well as a rightward propagating acoustic wéve- A). The ansatz
for these two waves (which are analogous to the one given in (3.1)) is

1+gM
! M2B | Jo(r—ie—Bnau f§>oa(z)dz
u = —(1+ f)T e M e vMh , (337)
P A=XAo O
and
v (1+9By o
ul =] @t A= M) | gerrBgAf @iz (3.38)
0

=A | @+hA=MA)

It should be pointed out that we must in general consider an ansatz which is an arbi
linear combination of the families of solutions put forward in (3.37) and (3.38). Howev
a substitution verifies that (3.37) and (3.38) individually are solutions to the system (3.:
(3.35) and, as a direct consequence of linearity, so is any linear combination of (3.37)
(3.38). Thus we have the same set of PML equations in both the “inflow” and “outflo
absorbings -layers, given by the system (3.36).

3.2. Then-Layers

Let us now direct the attention to the formulation of absorbing layers withinythe
layers—see Fig. 1. In the stretched coordinate system, Egs. (2.12)—(2.14) takes the g
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form
W + GW: + HW, =0, (3.39a)
where
; M 0 0 % 0y
W=|u], G=|0 01|, H=|—- 0 0] (339
Y

The eigenvalues db are(M, 1), while H has only two nonzero eigenvalues, namell.
SinceM > 0 we have, in thé& direction, one left-going wave and two right-going waves
For this situation one should match two waves at the rfglatyer and one wave at the left
&-layer. Indeed this is what was done in Subsection 3.1.

On the other hand sindd has only 2 nonzero eigenvaluekl), it is enough to match
one wave at eachr-layer. By analogy to (2.15) we seek a plane of the form

v P\
ul =\ p | et (3.40)
I P3

We find, unlike the case of (2.15), that the solvability eigenvalydias only 2 values (not
three), namely

1 =+v1— A2 =B, (3.41)
= —/1— A2= B, (3.42)

The corresponding eigenvectors are

By
p1 = ( A-M ) , (3.43a)

1-MA
p=| A-M |. (3.43b)
1-MA

Using the methodology of (3.1) the ansatz in thiayer takes the form

|

In a way analogous to that utilized for deriving (3.30)—(3.35), one can then derive a s¢

yB
}: (1+2)(A—M) | dot-ri-Bng By ovaz (3.44)
(1+2)a-MA

D C e
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PML equations for both the upper and lowglayers of the form

ou 4 o  Moav
ot o0& y on
dp du 1lov

et oet =0
aa—er ZV%_ZGQV_GZRV_“flPY’
oR

In the (x, y, t)-space the system (3.44)—(3.48) is

v dv  dp 2 ,
au au  adp
—+M— 4+ -Z =0,
at + ax + aX
ap dp du  Jv

P Ma—X + % 3y =0,
aa—lzy =v*[p —oyP)].
88—?=V2Qy-

Well-posedness of this system follows directly from the observation that only spatial der

277

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

tives of the density are introduced which, as we saw for the system (3.36) forl#lyer,

does not affect well-posedness.

4. COMPUTATIONAL TESTS

To confirm the theoretical analysis put forward in the previous sections and study
efficiency of this new PML method, we have implemented the scheme on an equidis

grid using a 4th order centered finite-difference scheme with 3rd order closure for stak

in space, while we use a 4th order Runge—Kutta scheme for advancing the equations in
The time stepAt, is chosen to be well below the stability limit. Contrary to the schen
proposed in[11], there is no need for applying a filter to maintain stability and, to empha

this point, we have not used any filters in the present work.
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The full set of PML equations are given as

ov dv  dp
M=+ £
at + X + ay
= —0yv + 20xQx + 07 Ry + Moy P + 20y Qy + 0/ Ry + 0, Py — £5v + 211y Q,,

au au  adp
CaME 1+ % — U o Mp — U,
ot T Vax Tox = U TP iy
8_,0 Ma_p au ov

A — oMU = j1yp,
ot TV ax Tax Tay T TP T O il

a )
Q2% (4.1)
ot ay
P) 9 ,

—O’XZRX — Moy Py + puxv — 2uyQy |,

P, oP,
BIX = y?[v — ox Py — &x P, 8—ty =y?p - ayPyl,
oR R
8tx = ¥21Qx — xRl 8_ty = J/Z[Qy — nyRy],

as obtained by adding the two individual PML schemes derived in each of the two layers
rigorously justify this approach one needs to do a complete analysis of the coupled sy
of PML equations within the corner. Unfortunately, due to the complexity of the systern
equations, we have been unable to complete such an analysis and can simply conje
that the corners also are perfectly matched. However, as we shall see shortly, the valid
this conjecture is indeed supported by the computational results.

A close inspection of the full set of PML equations, Eq. (4.1), will reveal that a few mc
terms, containing the profilesy y andey, than one would obtain by simply combining
Egs. (3.36) and (3.51) have been introduced in the equations, forp as well asQy,
Px, Ry, andRy.

To understand the need for these terms and their effect, let us for simplicity conside
equations for the-layer, (3.36), only and imagine a situation where the spatial variati
of the solution is limited. It should be emphasized that this latter assumption is done sc
to simpify the analysis and expose the problem. As examples of relavant scenarios w
such conditions can evolve one can think of local areas of the computational domain w
only little activity is present or a problem where a compact pulse has left the computatic
domain, leaving behind only errors caused by the numerical approximation.

Neglecting the equations fprandu, as they are decoupled and do not cause any probler
we recover the following system of ODEs

av
E = —oyxV + 20'X(g)( +0)<2RX + MO-;PX’
90, P, 5 d Ry 2
=0, = — P, . = .
at A A T A
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The first two eigenvalues of this system are easily found to,be= 0 while the remaining
two are found as the solution to the equation

A2+ ox(L+yHr+y? (02 — Moy) = 0.

To guarantee that this equation has solutions with purely negative real parts, one €
reaches the condition thaf — Mo, > 0, which, forM > 0, is always violated considering
thatoy in general is a polynomial that vanishes at the vacuum/layer interface.

As if this were not enough of a source of trouble, one may also realize that the mult
eigenvaluej o, is degenerate, i.e., it has only one eigenvector. Hence, the general solt
to the above systen takes the form

q(t) = A+ Bt + Cé=' 4+ De™t,

whereq(t) signifies any of the 4 variables; the constaofs, B, C, D), depend on the initial
conditions; and we recall that eith&g or A4 is positive in parts of the PML layer, hence
allowing for exponential growth.

The low order terms introduced in the PML to ensure absorption introduce a forci
i.e., if the computations require very long time integration this forcing may be a source
a significant problem. As a note, we recall that this growth does not contradict the str
well-posedness established in the previous section. Indeed, strong well-posedness <
implies that the solution can be uniformly bounded by the initial conditions up to exponer
growth in time.

To remove the instability, or rather unphysical growth in the PML layer, one must rec
that the growth is a result of positive eigenvalues of the system as well as a Jordan |
structure in the system of ODEs. One way of overcoming this problem is to attempt to ¢
the positive eigenvalue into the negative half plane and break the Jordan block by spli
the multiple eigenvalue.

Let us hence consider the modified system of ODEs

Jv
3 = o + 204 Qx + 02Rx 4+ Moy, P, — ey,
0Q 0P, R
m* =0, atx = p%(v — oy Px — xPx), mx = y%(Qx — uxRy),

where we now aim at specifyingy andey in order to remove the growth.
The eigenvalues of this slightly modified system is easily founhas 0, 1, = —y 21y
while the remaining two eigenvalues are found as the solution to the equation

22 4 (ox + e) (L4 YD1 + y2((0x + &% — Moy) = 0,

which, using the results discussed above, immediately yields the condition for deca
(ox + &x)? — Moy, > 0, a sufficient condition for this being that > /|May|.

The modifications for the equations in tizdayer are derived following a similar line of
analysis and are in fact easier as only algebraic growth is appearing.

The existence of this instability, or rather growth as a result of the low order ter
introduced by the PML construction, is not special to the schemes given by Eqs. (3.36)
(3.51) but is rather shared with all other known PML schemes suitable for aero-acou
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as well as electromagnetics. We shall not discuss this problem further here but rather
to [14] where a more thorough discussion of this phenomena will be presented.

Before we consider the performance of (4.1), let us note that while the additional te
stabilize the schemes they also have the effect that the system is no longer truly a
scheme. Even though the layers remain matched provided onlythat, and wy, are
tapered in a fashion similar t8, andoy, we can no longer guarantee that waves of a
frequencies impinging at all angles are absorbed equally well by the layers. Howeve
we shall see shortly, the performance of the layers is very promising.

We shall study the performance of the PML scheme when solving (2.4)—(2.6) subje
the following continuous forcing

; —(n2) (x—xa>2+2(yfya>2 T
X,y,t) =e % sin| —t|,
p (X, y, 1) [10}

—(n2) (x—xb>2+2<y—yb)2 I
Sin
10

uf(x,y,t) = 0.05(y — yp)e % —t} , (4.2)

—(n2) %52 +(y-yp)? p
v (X, y,t) = — 0.05(x — Xp)e % sin[—t} ,
10
where(Xa, Ya) signifies the center of sound source of widghwhile (xy, yy) refers to the
center of a vorticity source of widiy. The three forcing terms, Egs. (4.2), are simply adde
to (2.4)—(2.6).
The profiles gy (x) andoy(y), required in (4.1), are chosen as

0, IX] < Lx

ox(X) = n ,
' Cu(B55)" La< x| < Lu+ 8
4.3

0, Iyl =Ly 3

oy(y) = n
v Sy (E) Ly <yl <Ly+éy

Here we assume that the computational domain is boundéd byl , and|y| < Ly while
8y andsy refer to the width of the absorbing layers alongndy, respectively. The constants,
Cyx, Cy, andn, control the strength of the layer and we have chosen these parametel
Cx=Cy=1andn=4. It should noted that no effort has been made to optimize these pz
meters at this point in time as the primary goal of the present work is to present a ger
mathematical tool for the derivation of PML methods rather than a very specific and o
mized PML method. The auxiliary equations in (4.1) are advanced in time using the s
scheme and time-step as for the Euler equations themselves.

The additional profiles, introduced to stabilize the PML scheme, are generally taker

ex(X) = /Mloy ()|, ux(X) =ox(X),  uy(y) = oy(y).

It should be noted that only in cases where the very long behavior is studied do we ne
take iy y # 0.

We consider the problem in the computational dom@iny) e [—50, 50 with the ab-
sorbing layers outside and position the acoustic pulgeaty,) = (—25, 0) with a width
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FIG.2. The evolution of thé ,-error along the lin& = —48 for various layer thicknesség,= 8, for M =0.5.
(a) The error on the perturbation density(b) the error on the perturbation of the velocity componerithe error
computed using only characteristic boundary conditions is given for comparison.

of 6, = 3 while the vorticity pulse is positioned éty, y») = (25, 0) with a width ofs, =
The absorbing layers are terminated using characteristic boundary conditions.
Although an exact solution exists to this problem we have chosen to compare it
numerical solution obtained in the domain @f, y) € [—150, 150]. It is easy to see that
for t <317 no reflections from the outer boundary will have sufficient time to propag:
back and interact with the solution withir-p0, 50] and we can claim that such a solutior
represents the true numerical solution in an infinite domain far alB17. By using this
solution as a reference rather than the exact solution we obtain a true measure of the
ciency of the PML scheme as the inherent truncation errors of the scheme approxim:
the equations are eliminated.
In Fig. 2 we show thel,-error of p and v computed along the ling=—-48 and
y€[-50,50], i.e., it measures the efficiency of the PML scheme in the inflow lay

a b
10" 10"
o i Characteristic BC . i ﬂCharacterlstlc BC 5,25.~6
f / V\
- A : [ A
10° L | \/\/\/\/\/\/8 =10 10° \—VV\/\/\N\N\N\/\
; ’ , \\\% g \ 6 6_20 N
10t | 8,=8=30 10°E 8 a0
l ]
10°5— f/ e 200" 300 00— e e T o

time time

FIG.3. The evolution of the_,-error along the linex = 48 for various layer thicknessek,= é, for M =0.5.
(a) The error on the perturbation density(b) the error on the perturbation of the velocity componerithe error
computed using only characteristic boundary conditions is given for comparison.
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FIG. 4. The evolution of the_,-error along the ling/ = 48 for various layer thicknesse},= 8, for M =0.5.
(a) The error on the perturbation density(b) the error on the perturbation of the velocity componefithe error
computed using only characteristic boundary conditions is given for comparison.

Computing the reflection for various values of the thickness of the PML layer we clec
see how the accuracy of the computed solution is markedly increased over that arriv
using only characteristic variables. Indeed, using a layer as thin as 6 cells yields an acci
comparable to that of the characteristic treatment while increasing the thickness impr
the accuracy by close to 2 orders of magnitude.

In Fig. 3 we show a similar comparison, however, for a location near the outflow w
theL,-error being measured along the line- 48 andy € [—50, 50]. As in the inflow case,
a layer thickness of only 6 cells yields an accuracy comparable to that of characteri:
while increasing the thickness slightly has a marked effect of the overall accuracy.

A very similar conclusion can be reached for the performance of the layer ig-the
direction as illustrated in Fig. 4 where we show thgerror along the line off =48 and
x € [-50, 50]. As in the direction of the flow, the performance of the PML scheme is f
superior to that of using only characteristic variables.

Although we have only shown results here kb= 0.5, numerous computations confirm
that similar conclusions can be reached for the whole subsonic range with only avery s
decay in performance a4 approaches the transonic limit.

5. AFEW REMARKS

The development of efficient and accurate absorbing boundary conditions for probl
in acoustics and beyond remains a very significant challenge. What we have presented
however, provides a mathematical framework in which such development may be succe:
Indeed, the development of a PML for the three-dimensional equations of acoustic
straightforward provided only that the mean flow can be considered spatially constant

In cases where the mean flow is not aligned one may be able to apply a rotation tc
problem such that the mean flow is aligned with the computational grid, thus creatir
situation in which the current method is applicable. However, for the general situation wit
the mean flow is not aligned with one of the axes the difficulty arises due to the critical us
a special variable transformation in the development of the PML method. The identifica
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such a transformation in the case of a general flow would allow for the developmer

PML schemes for such situations using the techniques outlined in the previous sectior
this point in time we are, however, unaware of such a general transformation.

Ofequalimportance is the development of PML methods for problems involving smoo

varying mean flows, as in boundary layers and jets. While the mathematical tools devels
so far certainly are applicable for sufficiently smooth variations, new developments are t
likely needed to address the general variable coefficient problem.
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